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Abstract—Automatic localization of defects in metal castings is 
a challenging task, owing to the rare occurrence and variation in 
appearance of defects. Convolutional neural networks (CNN) have 
recently shown outstanding performance in both image 
classification and localization tasks. We examine how several 
different CNN architectures can be used to localize casting defects 
in X-ray images. We take advantage of transfer learning to allow 
state-of-the-art CNN localization models to be trained on a 
relatively small dataset. In an alternative approach, we train a 
defect classification model on a series of defect images and then 
use a sliding classifier method to develop a simple localization 
model. We compare the localization accuracy and computational 
performance of each technique. We show promising results for 
defect localization on the GRIMA database of X-ray images 
(GDXray) dataset and establish a benchmark for future studies on 
this dataset. 
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I. INTRODUCTION 
Quality control is an important aspect of modern 

manufacturing processes [1]. With an increased level of 
competition in the manufacturing market, manufacturers must 
increase their production rate while maintaining stringent 
quality control limits. In order to meet the growing demand for 
high-quality products, the use of intelligent visual inspection 
systems is becoming essential in production lines. 

The casting process can often introduce defects in the 
product which are detrimental to the final product quality [2]. 
The early detection of these defects can allow faulty products to 
be identified early in the manufacturing process, leading to time 
and cost savings [3]. It is beneficial to automate quality control 
where possible to ensure consistent and cost-effective 
inspection, especially if defect detection is to be carried out at 
many points along the production line. The primary drivers for 
automated inspection systems include faster inspection rates, 
higher quality demands, and the need for more quantitative 
product evaluation that is not hampered by the effects of human 
fatigue. 

There are a number of nondestructive examination (NDE) 
techniques available for producing two-dimensional and three-
dimensional images of an object. Real-time X-ray imaging 
technology is widely used in defect detection systems in 
industry, such as on-line weld defect inspection [3]. Ultrasonic 
inspection and magnetic particle inspection can also be used to 
measure the size and position of casting defects in cast 
components [4, 5]. An alternative method is three-dimensional 
X-ray computed tomography, that can be used to visualize the 
internal structure of materials. Recent developments in high 
resolution X-ray computed tomography have made it possible to 
gain a three-dimensional characterization of porosity [6, 7].  

The defect detection process can be framed as either an 
image segmentation problem or an object localization problem. 
In the image segmentation approach, the problem is essentially 
one of pixel classification, where the goal is to classify each 
image pixel as a defect or not. In the object localization 
approach, the goal is to place a tight-fitting bounding box around 
each defect in the image. As a related task, defect classification 
can then be performed to classify different types of defects. 
Common casting defects include air holes, foreign-particle 
inclusions, shrinkage cavities, cracks, wrinkles and casting fins 
[8]. Some defect detection systems attempt to locate and classify 
defects, but, in this study, we choose to focus purely on defect 
localization.  

In this work, we develop a fast and accurate casting defect 
localization system, utilizing recent advances in computer 
vision. More specifically, we develop a model that can localize 
casting defects in two-dimensional X-ray images. We train and 
evaluate the proposed casting defect localization models using 
the GRIMA database of X-ray images (GDXray) dataset, 
published by Grupo de Inteligencia de Máquina (GRIMA) [9]. 
The GDXray Castings subset contains 2727 X-ray images of 
metal parts, many of which contain casting defects. 

Object localization is a widely studied but difficult problem 
in computer vision [10]. In many tasks, including defect 
detection, the aspect ratio, size, location and the number of 
objects in each image are typically unknown variables. There is 



not a large amount of literature describing the application of 
modern computer vision techniques for casting defect 
localization [11, 12]. It has been suggested that many advances 
in defect detection remain proprietary [3]. 

Most object detectors contain two important components: a 
feature extractor and an object classifier. In traditional methods, 
the feature extractor is usually a hand-engineered module, such 
as histogram of oriented gradients (HOG) or local binary 
patterns (LBP). The classifier is commonly a support vector 
machine (SVM) or a non-linear boosted classifier [3]. In more 
modern object detectors, the feature extractor and object 
classifier are often replaced by neural networks (NNs).  

Recently, deep neural networks (DNNs) have attained 
impressive performance in many fields such as image 
classification, object detection, and semantic segmentation [13–
16]. The performance of these deep networks has begun to 
exceed human performance in many tasks. For example, the 
human top-5 classification error rate on the large scale ImageNet 
dataset has been reported to be 5.1 %, whereas a state-of-the-art 
NN achieves a top-5 error rate of 3.57 % [13, 17]. The top-5 
error rate indicates the fraction of the test images for which the 
correct label is not among the five labels considered most 
probable by the classification model. Large performance 
improvements have also been realized by training deep 
convolutional neural networks (CNN) for object detection [14, 
15, 18]. While many NN architectures have been proposed for 
the object localization task, there is still no consensus on the best 
method. Therefore, we choose to train and compare a number of 
different architectures on the defect detection task. To 
summarize, our main contributions are as follows: 

• We provide a concise summary of modern casting defect 
detection algorithms. 

• We adapt several modern object detection networks to the 
casting defect task. We use these networks to conduct several 
experiments that explore the speed/accuracy tradeoff. 

• We demonstrate that transfer learning can be used to improve 
defect localization on the relatively small GDXray dataset. 

To the best of our knowledge, this study presents the first 
benchmark results for defect localization using the publicly 
available GDXray dataset. 

II. RELATED WORK 
The detection and localization of casting defects with 

traditional computer vision techniques is a well-studied task. 
One popular method is background subtraction, where an 
estimated background image (which does not contain the 
defects) is subtracted from the preprocessed image to leave a 
residual image containing the defects and random noise [19–
21]. However, background subtraction tends to be very 
sensitive to the positioning of the image, as well as random 
image noise. A range of matched filter techniques have also 
been proposed, with modified median (MODAN) filtering 
being a popular choice [22]. The MODAN–Filter is a median 
filter with adapted filter masks, that is designed to differentiate 
structural contours of the casting piece from casting defects 

[23]. A number of other authors have proposed wavelet-based 
techniques with varying levels of success [8, 24]. Interestingly, 
the convolutional feature extraction technique proposed in this 
work can be seen as a generalization of many traditional filter-
based techniques, where instead of specifying the filter type a 
priori, we attempt to learn the optimum filters [25].  

Feature-based detection is another useful technique, where 
each image pixel is classified as a defect or not depending on 
features that are computed from a local neighborhood around 
the pixel. Common features include statistical descriptors 
(mean, standard deviation, skewness, kurtosis) and localized 
wavelet decomposition [8]. Selecting a threshold value to 
determine if a pixel is part of a defect region remains a large 
challenge of this method, although adaptive threshold methods 
have been proposed [26]. Several fuzzy logic approaches have 
also been proposed, but these techniques have been largely 
superseded by modern NN-based computer vision techniques 
[27]. 

Many state-of-the-art object detection systems developed 
from the region-based convolutional neural network (R-CNN) 
architecture [28]. R-CNN creates bounding boxes, or region 
proposals, using a process called selective search. At a high 
level, selective search looks at the image through windows of 
different sizes, and for each size tries to group together adjacent 
pixels by texture, color, or intensity to identify objects. Once 
the proposals are created, R-CNN warps the region to a 
standard square size and passes it through a feature extractor. A 
SVM classifier is then used to predict what object is present in 
the image, if any. In more recent object detection architectures, 
such as region-based fully convolutional networks (R-FCN) 
each component of the object detection network is replaced by 
a DNN [18]. 

III. OBJECT DETECTION ARCHITECTURES 
Our main approach draws on recent successes of CNN for 

image feature extraction and object localization [13–15, 17]. We 
focus primarily on applying three recent object detection 
architectures to the casting defect detection task, namely: Faster 
R-CNN [14], R-FCN (Region-based Fully Convolutional 
Networks [18]) and SSD (Single Shot Multibox Detector [15]). 
While these architectures were originally presented with a 
particular feature extractor, we review each method using both 
the Visual Geometry Group (VGG) and Residual Network 
(ResNet) type feature extractors. This allows us to make a fair 
comparison between the performance of object detection 
networks on the casting defect localization task.  

At a high level, all three architectures consist of a single 
convolutional network, trained with a mixed regression and 
classification objective. Each architecture defines a preset list of 
anchor boxes at different spatial locations in the image. These 
anchors often vary in aspect-ratio and scale, such as to contain 
any potential object in the image. The model is trained to make 
two predictions for each anchor: the offset between the anchor 
and the ground truth bounding box, and the class of the object 
inside the anchor, if any.  



Each of the object detectors described in this work minimize 
a combined classification and regression loss, that we now 
describe. For each anchor, ܽ, the best matching defect bounding 
box ܾ is selected. The precise method for selecting the bounding 
box depends on the object detection architecture [14, 15, 18]. If 
such a match is found, then we assume a contains a defect and 
we assign it a ground-truth class label ݕ௔ = 1. In this case, we 
also assign a vector encoding of box ܾ with respect to anchor ܽ, 
denoted ߶(ܾ௔; ܽ). If no match is found, we assume that ܽ does 
not contain a defect and we set the class label ݕ௔ =0. The 
location-based loss for ܽ  is expressed as a function of the 
predicted box encoding ௟݂௢௖(ࡵ; ܽ, ;and ߶(ܾ௔ (ࣂ ܽ) , where ࡵ is 
the image and ࣂ is the model parameters. The classification loss 
is expressed as a function of the predicted class ௖݂௟௔௦௦(ࡵ; ܽ,  (ࣂ
and ݕ௔. The total loss for ܽ is expressed as the weighted sum of 
the location-based loss and the classification loss [29]: 

,ܽ)ܮ ;ࡵ (ࣂ = ߙ ⋅ ௔ݕ ⋅ ݈௟௢௖൫߶(ܾ௔; ܽ) − ௟݂௢௖(ࡵ; ܽ, ൯(ࣂ
ߚ	+																										 ⋅ ݈௖௟௔௦௦൫ݕ௔, ௖݂௟௔௦௦(ࡵ; ܽ,  ,	൯(ࣂ

(1)

where ߙ ߚ ,  are weights chosen to balance localization and 
classification losses [30]. The location loss function 
݈௟௢௖	captures the distance between the true location and the 
estimated one. We use the Smooth L1 loss function as ݈௟௢௖	with 
all architectures, even though the L2 loss function was 
originally proposed in [15, 30]. The classification loss ݈௖௟௔௦௦  
measures the difference between the predicted class and the true 
class, for each anchor. We use the cross-entropy loss function 
for ݈௖௟௔௦௦ [17]. Table I summarizes the box encoding and loss 
functions used with each architecture. To train the object 
detection model, (1) is averaged over the set of anchors and 
minimized with respect to parameters ࣂ.  

A. Faster R-CNN 
Faster R-CNN is a state-of-art object detection system 
composed of two modules. The first module is a deep fully-
convolutional neural network that proposes regions, and the 
second module is a feed-forward neural network that attempts 
to classify the objects in each region [14]. We will refer to the 
first module as the region proposal network (RPN) and the 
second as the region-based detector (RBD). The RBD makes 
two predictions for each region: a discrete class prediction for 
each region, and a continuous prediction of an offset by which 
the region needs to be shifted to best fit the ground truth 
bounding box. 

Unlike [14], we choose to decouple the feature extractor 
from the RPN. This allows us to review the performance of R-
CNN with two different feature extractors. This also makes it 
much easier to initialize the feature extractor with pretrained 
weights, especially when using standardized feature extractors 
such as VGG-16 or ResNet-101 [17, 31]. 

We now describe the configuration of the Faster R-CNN 
object detector used in this work. We configure the RPN to 
generate 300 region proposals for each image, as in [14].  

 
 

 TABLE I.  LOSS AND BOX ENCODING FUNCTIONS FOR EACH
  ARCHITECTURE, AS USED IN THIS WORK. 

Architecture Box Encodinga 
;ࢇ࢈)ࣘ  (ࢇ

Class Loss 
 ࢙࢙ࢇ࢒ࢉ࢒

Loc. Loss 
 ࢉ࢕࢒࢒

Faster R-CNN [ ௫೎
௪ೌ
, ௬೎௛ೌ , logݓ , logℎ] 

Cross 
Entropy Smooth Lଵ 

R-FCN [ ௫೎
௪ೌ
, ௬೎௛ೌ , logݓ , logℎ] 

Cross 
Entropy Smooth Lଵ 

SSD [ݔ଴, ݕ଴, ݔଵ, ݕଵ] Cross 
Entropy Smooth Lଵ 

a. Boxes are encoded with respect to a matching anchor ܽ via a function ߶, where [ݔ଴, ,଴ݕ ,ଵݔ  ଵ] areݕ
the min/max coordinates of the box, ݔ௖ , ݕ௖ are its center coordinates, and ݓ, ℎ are its width and 
height. The terms ݓ௔ and ℎ௔ denote the width and height of the matching anchor, and log is used 
to denote the natural logarithm. 

 
Anchor boxes are generated using 1:1, 1:2, and 2:1 aspect ratios 
at three different scales. As with many object detection 
networks, we find that faster R-CNN produces duplicate object 
proposals. To reduce redundancy, we apply the non-maximum 
suppression (NMS) algorithm on the proposed outputs [33].  

We train and test the Faster R-CNN model using the images 
from the GDXray Castings dataset. Images are scaled to 600 
pixels on the shorter edge. Additionally, we randomly flip the 
images horizontally at training time. This data augmentation 
technique is applied to artificially increase the size of the 
training dataset. We do not apply any other form of 
preprocessing to the images at training or testing time.  

B. R-FCN 
In contrast to the Faster R-CNN architecture, the R-FCN 

region-based detector is fully convolutional with almost all 
computation shared on the entire image. In Faster R-CNN, 
region-specific RBD must be applied several hundred times per 
image, greatly reducing performance [18]. In R-FCN, the 
feature map is cropped at the last layer of features prior to 
prediction, instead of cropping it at the layer where region 
proposals are generated [18]. This approach of pushing 
cropping to the last layer minimizes the amount of per-region 
computation that must be done.  

We now describe the configuration of the R-FCN object 
detector used in this work. Similar to the Faster R-CNN 
network, we train and test R-FCN with the original unprocessed 
images from the GDXray dataset. We use the same anchor 
scales and aspect ratios as for Faster R-CNN. Again, we 
generate 300 region proposals for each image. Images are 
scaled to 600 pixels on the shorter side. Random horizontally 
flipping of the images is applied as a data augmentation 
technique. Again, we use NMS to reduce redundancy in the 
predicted output. 

C. Single Shot MultiBox Detector (SSD) 
Recently, a new family of object detection networks were 

proposed, in which the region proposal step is completely 
eliminated [15, 33]. One of the popular architectures, SSD, 
discretizes the output space of bounding boxes into a set of 
default boxes over different aspect ratios and scales [15]. At 
prediction time, the network generates scores for the presence 



of each object category in each default box and produces 
adjustments to the box to better match the object shape. The 
SSD architecture uses feature maps from multiple different 
layers of the feature extractor to handle objects of various sizes. 
SSD is conceptually simpler than other methods as it eliminates 
the proposal generation, and subsequent feature resampling 
stage. The simplified architecture of the SSD network makes it 
faster than Faster R-CNN and R-FCN at test time [15]. 

We now describe the configuration of the SSD object 
detector used in this work. Unlike the Faster R-CNN and R-
FCN architectures, the input size of the SSD architectures is 
fixed. We choose to use an input size of 300 × 300 pixels, as is 
common in many SSD implementations [15, 29]. During the 
training process, we randomly crop the input images to 300 × 
300 pixels. If the cropped image does not contain any ground-
truth-labelled defects, it is discarded. Cropped images are 
randomly flipped, both horizontally and vertically at training 
time. The amount of benefit obtained from horizontal and 
vertical flipping the training images often depends on the type 
of images in the dataset. For example, horizontally flipping an 
image of a boat will give an equally probable image, while 
vertically flipping the same image will yield an improbable 
image. Flipping an image from the GDXray Castings dataset 
either horizontally or vertically will yield an equally probable 
image. We chose to vertically flip input images when training 
the SSD model, as the SSD  architecture is believed to be less 
robust to image transformation than methods such as Faster R-
CNN [15]. However, future work could explore the benefits of 
each data augmentation technique in more detail.   

When evaluating a test image with an SSD model it is 
common to scale the image to the model input size (in this case 
300 × 300 pixels). The aspect ratio is often preserved by 
padding the image with black pixels. However, we found that 
down-scaling the GDXray images made the defects very 
difficult to detect. Therefore, at test time, we slide the SSD 
classifier over the original image with a stride of 150 pixels. We 
post-process the resulting predictions using non-maximum 
suppression (NMS) to remove duplicate boundary boxes.   

IV. SLIDING CLASSIFIER 
A simple approach to the object localization task is to slide 

a classifier over the image, generating a heat-map of potential 
object locations. The heat-map can then be post-processed, to 
generate object location predictions. Although this method has 
been largely superseded by modern computer vision techniques, 
it can provide useful insight into the object localization task. 

We develop a convolutional defect classifier based on the 
Xnet architecture proposed for a similar defect classification 
task [35]. The Xnet classifier is modified to reduce overfitting, 
leading to the architecture shown in Table II. We refer to this 
modified architecture as XnetV2. We add ܮଶ regularization to 
the last four convolutional layers of the neural network.  
Conceptually, the lower convolutional layers use the output 
from the upper layers to classify each image; applying 
regularization to the lower layers can prevent the classifier 
overfitting. This is done by adding a complexity penalty, sum of 

squares of weights, to the loss function. For detailed information 
regarding regularization and overfitting, we refer the reader to 
[36]. The max-pooling layers in Xnet are replaced with 
convolutional layers with stride 2. A dropout probability of 0.25 
is used during training. The proposed network architecture is 
“fully convolutional” in that it only contains convolutional and 
ReLU layers [37]. This allows the network to take an input of 
arbitrary size and produce correspondingly-sized output with 
efficient inference and learning. However, we deliberately 
design the network so that a 32 × 32 pixel image is mapped to a 
1 × 1 × 2 sized tensor. 

Our key insight is to train the classification model on a large 
dataset of defect patches. We obtain a public dataset containing 
47,520 cropped X-ray images of size 32 × 32 pixels along with 
the corresponding labels [35]. The dataset contains 23,760 
patches with label defect and 23,760 patches with label no-
defect. Example patches from this dataset are shown in Fig. 1. 
The dataset was originally synthesized by cropping defect 
images from the GDXray Castings series. When generating the 
dataset, the original cropped images were rotated at 6 different 
angles (0°, 60°, 120° ... 300°) and flipped both horizontally and 
vertically. This data augmentation technique was applied to 
artificially increase the size of the dataset, and encourage 
rotation invariance in classifiers that are subsequently trained on 
the dataset. 

 TABLE II.  PROPOSED XNETV2 ARCHITECTURE 

 Layer type Filter Size ࢒
(w×h, n)  Stride Output Size 

࢝× ࢎ ×  ࢊ

0 Input - - 32 × 32 × 1 

1 Convolution 7 × 7, 32 1 32 × 32 × 32 

2 Convolution 3 × 3, 32 2 16 × 16 × 32 

3 ReLU - - 16 × 16 × 32 

4 Convolution 3 × 3, 64 1 16 × 16 × 64 

5 Convolution 3 × 3, 64 2 8 × 8 × 64 

6 ReLU - - 8 × 8 × 64 

7 Dropout - - 8 × 8 × 64 

8 Convolution+ܮଶ 3 × 3, 128 1 6 × 6 × 128 

9 Convolution+ܮଶ 3 × 3, 128 2 2 × 2 × 128 

10 ReLU - - 2 × 2 × 128 

11 Convolution+ܮଶ 2 × 2, 64 1 1 × 1 × 64 

12 Convolution+ܮଶ 1 × 1, 2 1 1 × 1 × 2 

13 Softmax - - 1 × 1 × 2 



The XnetV2 architecture returns a vector of scores ݕො 	∈ Թଶ, 
with each component corresponding to the likelihood of a 
particular class. For the casting defect detection task, we only 
consider two classes: defect and no-defect. 

We train the XnetV2 architecture on the patch dataset using 
the binary cross-entropy loss function [29]: 

(ݓ)ܮ = 	− 1
ܰ෍ݕ௡ log ො௡ݕ + (1 − (௡ݕ log(1 − 	(ො௡ݕ ,

ே

௡ୀଵ
 (2) 

where ܰ is the number of training examples and ݕ௡ ∈ Թଶ is a 
vector containing the true class labels. 

Applying the trained classifier to the images in the GDXray 
dataset produces a defect heat-map, as shown in Fig. 2. The 
heat-map can be seen as an estimate of the probability that a 
defect exists at the corresponding spatial location in the original 
image. The selective search algorithm is used to generate a set 
of bounding box proposals from the heat-map [38]. Bounding 
boxes with an average heat-map value greater than 0.5 are 
labelled as defects. 

V. FEATURE EXTRACTORS 
It has been shown that the choice of feature extractor can 

strongly influence the output of the object detection network. 
For casting defect detection, the choice of feature extractor is 
likely very important:  

• Casting defects such as air bubbles tend to be very small, and 
can easily be mistaken for random image noise. 

• Casting can generate large oddly shaped voids as shown in 
Fig. 3. The feature extractor must operate over a large 
enough space to capture these formations. 

• Most state-of-the-art feature extractors are designed and 
trained to detect well-defined objects such as and cars. We 
suspect that the features used to detect these objects may 
differ from the features used to detect casting defects. 

We choose to base our feature extractors on the VGG and 
ResNet architectures [21, 26]. We initialize the feature 
extractors with pretrained weights created using the ImageNet 
dataset. This initialization strategy represents a form of transfer 
learning, where knowledge from the ImageNet dataset is 
transferred to the casting defect detection task.  

A. VGG-16 
The VGG architecture has been widely used in computer 

vision over the last few years. It consists of stacked 
convolutional and max pooling layers. We choose to use the 
smaller, and hence faster, 16-layer architecture known as VGG-
16 [32]. The VGG-16 architecture is detailed in Fig. A1 in the 
Appendix. The outputs of the upper convolutional layers are 
used as feature maps in the object detection networks: 

 

• Faster R-CNN: We extract features from the “conv5” layer 
whose stride size is 16 pixels. 

• SSD: Following [15], we extract feature maps from the 
“conv4_3”, and “fc7” layers. The “fc6” and “fc7” layers 
from the VGG-16 architecture are converted to 
convolutional layers as described in [15]. Five additional 
convolutional layers with decaying spatial resolution are 
appended to the VGG network, as described in [30]. 

Presently, we have not obtained the results from the R-FCN 
network with VGG-16 feature extractor, so we do not discuss 
this model in further detail here. 

B. ResNet-101 
The ResNet architecture was designed to avoid many of the 

issues that plagued very deep neural networks. Most 
predominately, the use of residual connections helps to 
overcome the vanishing gradient problem [17]. We choose to 
use the relatively large ResNet-101 variant which has 101 
trainable layers [17]. The ResNet-101 architecture is detailed in 
Table A1 in the Appendix. We freeze the batch normalization 
parameters to be those estimated during ImageNet pretraining. 
Again, the outputs of the upper convolutional layers are used as 
feature maps in the object detection networks: 

 

• Faster R-CNN: We extract features from the last layer of 
the “conv4” block with stride size 16 pixels. Feature maps 
are cropped and resized to 14 × 14 then max-pooled to 7 × 7. 

• R-FCN: We extract features from “block3” layer whose 
stride size is 16 pixels.  

• SSD: We use the feature map from the last layer of the 
“conv4” block, which has a stride size of 16 pixels. Five 
additional convolutional layers with decaying spatial 
resolution are appended, with depths 512, 512, 256, 256, 
128, as described in [30].  

 
Fig 1. Examples of patches containing defects (left) and no-defects (right). 
 

 

Fig 2. Original X-ray image containing a single defect (left), and the 
corresponding defect heat-map produced by the sliding classifier (right). 



VI. IMPLEMENTATION DETAILS 
Transfer learning is used to reduce the total training time 

and improve the accuracy of the trained models. In our early 
experiments, we found it was difficult to train the object 
localization networks solely on the GDXray dataset. The main 
issue was that the localization models tended to overfit the 
training dataset, without learning any meaningful features. As 
a remedy, we initialize the localization model feature extractors 
using weights from feature extractors that were trained on the 
ImageNet dataset. In this way, the top layers of the localization 
network are already initialized to extract image features before 
we start training on the GDXray dataset. We then pretrain each 
localization model on the Microsoft Common Objects in 
Context (COCO) dataset [39]. When pretraining the model, we 
adjust the learning rates according to the schedule outlined in 
[30]. Training on the relatively large COCO dataset ensures that 
each model is initialized to localize common objects before it is 
trained to localize defects. Finally, we fine-tune the localization 
models on the GDXray Castings dataset.  

The GDXray Casting dataset contains 2727 X-ray images 
mainly from automotive parts, including aluminum wheels and 
knuckles. The casting defects in each image are labelled with 
tight fitting bounding-boxes. The size of the images in the 
dataset ranges from 256 × 256 pixels to 768 × 572 pixels. Fig. 3 
shows a random collection of images from the GDXray Casting 
dataset. The images in the dataset were randomly split into a 
training and testing set using an 80/20 split. We publicly release 
the list of images in the training and test set to facilitate fair 
comparison in future work [40].  

When training the models, we choose to exclude images 
without defects, as we found this makes the training process 
much more stable. With non-defective samples excluded, the 
training set contains a total of 2308 images with 2334 annotated 
defects. 

Training is completed on the Google Cloud Machine 
Learning Engine using a cluster with 5 worker nodes and 3 
parameter servers [41]. Asynchronous stochastic gradient 
descent with momentum is used to train each model on the 
distributed hardware. Each worker node performs graph 
calculations on a NVIDIA Tesla Kepler K80 GPU.  

 

Training the sliding classification architecture was completed 
in less than an hour. Fine-tuning the weights for the larger 
object localization architectures took up to 6 hours per model. 
The training loss for the fine-tuning process is shown in  
Fig. 4. 

 
Fig 4. Training loss (smoothed) for the object localization networks, during 
the fine-tuning process. Note that the loss function for the SSD network varies 
from that of the R-FCN and Faster R-CNN networks, so the relative 
magnitudes of loss is not relevant. 
 

 

Fig. 5. Mean average precision (mAP) of each object detection network on the 
test set, given different sized training sets. 
 

 
Fig. 3. Examples of X-ray images in the GDXray Castings dataset. The red boxes show the ground-truth labels for casting defects  



VII. EXPERIMENTS 
We conduct a number of experiments with the object 

localization models. The accuracy of each model on the test set 
is compared using the mean of average precision (mAP) [42]. 
We use the intersection over union metric (IoU) to determine 
whether a bounding box prediction is to be considered correct. 
To be considered a correct detection, the area of overlap ܽ௢ 
between the predicted bounding box ܤ௣  and ground truth 
bounding box ܤ௚௧ must exceed 0.5 according to the formula: 

ܽ௢ =
area(B୮ 	∩ 	B୥୲)
area(B୮ 	∪ B୥୲)

		, (3) 

where B୮ ∩ B୥୲  denotes the intersection of the predicted and 
ground truth bounding boxes and B୮ ∪ B୥୲ denotes their union.  

The mAP for each architecture is shown in Table III. The 
Faster R-CNN architecture achieves a very high mAP of 0.921 
with the ResNet feature extractor. The mAP of the SSD 
architecture is considerably lower than the Faster R-CNN and 
R-FCN architectures, regardless of the feature extractor. This is 
unsurprising, as the SSD architecture was designed to prioritize 
evaluation speed over classification accuracy [15].   

In general, the defect localization models using the ResNet 
feature extractor performed better than those using the VGG 
feature extractor. This is not surprising, as the ResNet 
architecture has been shown to outperform the VGG 
architecture on a number of different tasks [17, 29]. However, 
most of these tasks involve identifying common objects such as 
cars, planes and bicycles. Additionally, the ResNet-101 feature 
extractor has a much larger number of layers than the VGG-16 
feature extractor, which might not be beneficial in the defect 
localization task. For these reasons, we were unsure whether the 
defect localization models with the ResNet feature extraction 
architecture would yield better results than the models with the 
VGG feature extraction architecture.  

The evaluation speed of each architecture is also measured. 
The models are evaluated on a 2.2 GHz Intel Xeon E5 virtual 
machine with 8 virtual CPU cores, 32 GB RAM, and a single 
NVIDIA Tesla Kepler K80 GPU. The models are evaluated 

with the GPU being enabled and disabled. Every image in the 
testing data set is processed individually (no batching). The 
average evaluation time per image in the testing set is reported. 
Both the image preprocessing and post-processing are included 
in the reported evaluation time. 

Table III shows that the evaluation time varies significantly 
between the networks. The SSD VGG-16 network is the fastest 
with an evaluation time of 0.088 seconds/image using the CPU 
and 0.025 seconds/image when using the GPU. The Faster R-
CNN ResNet-101 architecture is the slowest, requiring 0.512 
seconds/image when using GPU. Interestingly, the evaluation 
time seems to be inversely correlated with the mAP, showing 
the speed/accuracy tradeoff. 

The localization accuracy of the sliding window method is 
significantly lower than that of the other object detection 
architectures. At a high level, this demonstrates the significant 
amount of progress that has been made in object localization 
over the last few years. However, there are a number of 
practical reasons why the performance of the sliding window 
method is so low. Firstly, the receptive field of the sliding 
window method is 32 × 32 pixels; that is, the network must 
generate a class score based on a 32 × 32 pixel image tile. 
Therefore, it is unlikely that the sliding window method can 
classify defects that are larger than this receptive field.  
Secondly, we use a naïve thresholding method to convert the 
defect heat-map into bounding box predictions. We 
hypothesize that this method is suboptimal, especially when 
compared to the way that the state-of-the-art object detectors 
are trained. 

As with many deep learning tasks, it takes a large amount 
of labelled data to train an accurate classifier. We train the best 
performing classifiers with different amounts of training data, 
and observe the performance of each classifier. Fig. 5 shows 
how the amount of training data affects the accuracy of the 
classifier. We notice that the accuracy improves significantly 
when the size of the training dataset is increased from ~1100 to 
2308 images. Extrapolating from Fig. 5 suggests that a higher 
mAP could be achieved with a larger training dataset. 

 

TABLE III. COMPARISON OF THE ACCURACY AND PERFORMANCE OF EACH MODEL ON THE CASTING DEFECT LOCALIZATION TASK 

Method Evaluation time / image using CPU 
[s] 

Evaluation time / image using GPU 
[s] mAP 

Sliding window method 2.231 0.231 0.461 

Faster R-CNN VGG-16 7.291 0.438 0.865 

Faster R-CNN  ResNet-101 9.319 0.512 0.921 

R-FCN ResNet-101 3.721 0.375 0.875 

SSD VGG-16 0.088 0.025 0.697 

SSD ResNet-101 0.141 0.051 0.762 



VIII. FUTURE WORK 
The object detection models described in this work are 

accurate enough and can be evaluated fast enough to be useful 
in a real manufacturing setting. However, the training process 
for these models is complex and computationally expensive. 
Future work could focus on developing a standardized method 
of representing these models, making it easier to distribute the 
trained models. It would also be interesting to apply the object 
detection models from this work to other defect detection tasks, 
such as welding defect detection. Finally, the models developed 
in this work could be adapted to detect casting defects in three-
dimensional X-ray computed tomography images.  

IX. CONCLUSION 
In this work, we have studied how several state-of-the-art 

object detectors can be used to localize casting defects in the 
GDXray casting dataset. By decoupling the feature extraction 
layer from the object detection architecture, we could evaluate 
each object detection architecture with different feature 
extractors. Using an adapted version of the Faster R-CNN 
architecture, we were able to achieve a mAP of 0.921 on the 
testing dataset. This represents an extremely strong result, 
especially given the inherit difficultly of defect localization. 
The results show that there is a tradeoff between localization 
accuracy and inference time, with the Faster R-CNN models 
taking much longer to generate predictions than the other 
models. 

To the best of our knowledge, this work represents the first 
attempt at casting defect localization with the GDXray dataset. 
We hope that the results presented here will serve as a 
benchmark for future work in casting defect localization. 
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APPENDIX: FEATURE EXTRACTION NETWORK ARCHITECTURES 
 
 

 
Fig. A1. The standard VGG-16 network architecture as proposed in [32]. Note that only layers “conv1” to “fc7” are used in the feature extractor. 
 
 
 
 

 TABLE A1.  RESNET-101 ARCHITECTURE AS PROPOSED IN [17]. ONLY LAYERS “CONV1” TO 
   “CONV4_X” ARE USED IN THE FEATURE EXTRACTOR 

Layer 
name 

Filter Size 
(width × height, number filters) 

Output Size 
(width × height × depth)  

conv1 7 × 7, 64, stride 2 112 × 112 × 64 

conv2_x 

3 × 3, max pool, stride 2 

56	 × 	56	 × 	256 
൥
1 × 1, 64
3 × 3, 64
	1 × 1, 256

൩ × 3 

conv3_x ൥
1 × 1, 128
3 × 3, 128
	1 × 1, 512

൩ × 4 28 × 28 × 512 

conv4_x ൥
1 × 1, 256
3 × 3, 256
	1 × 1, 1024

൩ × 23  14 × 14 × 1024 

conv5_x ൥
1 × 1, 512
3 × 3, 512
	1 × 1, 2048

൩ × 3 7 × 7 × 2048 

output average pool, fully connected, softmax 1 × 1 × 1000 

 


